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ABSTRACT

As humans come to rely on autonomous systems more, ensuring
the transparency of such systems is important to their continued
adoption. Explainable Artificial Intelligence (XAI) aims to reduce
confusion and foster trust in systems by providing explanations
of agent behavior. Partially observable Markov decision processes
(POMDPs) provide a flexible framework capable of reasoning over
transition and state uncertainty, while also being amenable to ex-
planation. This work investigates the use of user-provided counter-
factuals to generate contrastive explanations of POMDP policies.
Feature expectations are used as a means of contrasting the perfor-
mance of these policies. We demonstrate our approach in a Search
and Rescue (SAR) setting. We analyze and discuss the associated
challenges through two case studies.
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1 INTRODUCTION

As artificial intelligence is increasingly adopted in settings that
involve human supervision, it is increasingly important that end
users are able to understand the reasoning behind the decisions
made by such systems. This is especially important when artificial
intelligence is used in mission-critical roles, such as search and
rescue [17]. The ability of an expert to ask questions and resolve
confusion about the methods and results of such a system may
make the difference between the adoption and appropriate trust
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of a system, and the mistrust and disuse of a system. Explainable
Artificial Intelligence (XAI) seeks to enhance trust and enable trans-
parency in these systems. Ideally, these autonomous systems should
not only perform at a high level but also maintain sufficient trans-
parency such that clear explanations of system behavior can be
provided to end users.

The partially observable Markov decision process (POMDP) pro-
vides a flexible framework for reasoning over state and transition
uncertainty. POMDPs have been applied to problems ranging from
air collision avoidance [10] to cancer screening [3]. POMDPs are
capable of capturing complex domains with millions of states [21]
while accounting for uncertainty over these states. (PO)MDPs also
lend themselves well to explanations, with more inherent trans-
parency than black box methods. While much of XAI focuses on
black box methods [16], explanations for model-based methods,
specifically explainable planning, are increasingly a focus [5].

When interfacing autonomy with an end user, structured in-
teraction can be useful to establish transparency in and trust of
the system [14]. Specifically, contrastive explanations such as "A
performs better than B because C" can be very useful in gaining
the trust of end users [5]. Counterfactuals, or alternatives, (e.g., to
executed actions or policies) provide insight into what could have
happened under modified components of the system and can help
make systems more interpretable [4]. However, the application
of counterfactuals to different classes of problems is not always
immediately intuitive. In this work, we tackle this challenge and
explore the use of user-given counterfactuals to provide contrastive
explanations for POMDP policies. We demonstrate the approach
in the context of a Search and Rescue (SAR) POMDP example and
discuss associated challenges.

We first provide a brief overview of explainable planning. We
then propose a methodology for counterfactual path explanations
for a SAR POMDP domain, and conclude with illustrative examples
and a following discussion.

1.1 Explainable Planning

Planning explanations can be organized into model-based algorithm-
agnostic and algorithm-specific explanations [5]. Model-based ex-
planations assume that an algorithm has solved for an optimal
policy, and that any user confusion would be as a result of mis-
translations of the user’s preferences and not a result of algorithm
limitations or misunderstanding of algorithm reasoning. However,
explaining the characteristics of the policy can give more insight
into the quantitative reasoning of the algorithm and enhance the
interpretability of the system. Interpretability amounts to under-
standing the outcome of an algorithm in terms of the quantitative
flow of information [7]. Comprehensibility entails comprehending
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the outcome when explained using symbols such as environment
landmarks and characteristics [7].

Many works have sought to increase the explainability of plan-
ning, particularly in the context of MDPs. The objective of MDPs
is to generate a policy that maximizes the (discounted) expected
reward. Offering contrastive explanations in terms of the expected
reward may be interpretable to users but may not enhance com-
prehensibility. Instead, it can be intuitive to evaluate a policy with
respect to the expected feature occupancy, where features sym-
bolize abstract components of the reward function [8, 9]. This can
enhance comprehensibility for the end user. Luebbers et al. [12] in-
vestigate the timing of contrastive justifications of paths generated
by solving MPDs. Soni et al. [18] utilize counterfactual queries to
first build user profiles and then provide tailored explanations but
do not provide contrastive explanations after inferring a given user.

POMDPs introduce an added layer of complexity by reasoning
over uncertainty in the state. The true state is hidden and is only
partially observable. Optimal (i.e., with respect to reward) POMDP
planning consists of branching on not only state transitions but
also observations. This type of planning has the potential to seem
unintuitive to an end user. As a result, many works have attempted
to make POMDP reasoning more interpretable and comprehensible.

Several works explored interactions between the autonomy and
the end user to enhance trust, yet do not provide explanations for
agent behavior [2, 15].

Other works provide explanations in terms of the POMDP com-
ponents. In [19, 20], the agent behavior is explained with respect
to the POMDP’s beliefs, rewards, transitions, and observations.
However, the interaction between the autonomy and the user only
occurs one way. The user is not able to provide counterfactuals to
further understand the behavior.

To assess counterfactuals for a POMDP (e.g. a user-defined open-
loop path), contrastive explanations need to present expectations
with respect to state transitions, observations, and initial belief.
Mazzi et al. [13] analyze traces of a POMCP tree to reason about
safety-critical belief-dependent decisions. This was conducted by
representing undesired actions using rule templates and shields in
the POMCP tree to avoid actions that violate belief thresholds.

We aim to provide a straightforward method of explaining poli-
cies by contrasting them against user-proposed counterfactuals via
feature expectations. The following section discusses our method-
ology for generating these explanations for a SAR POMDP.

2 METHODOLOGY

The goal of this work is to provide an intuitive means for the user to
better understand why a given path is executed in the SAR POMDP
domain. Here, we focus on addressing differences between user and
algorithm reasoning. Consider the following motivating example:

Example 2.1 (Search and Rescue). Consider a search and rescue
scenario with a human rescuer and an autonomous search agent (e.g.
a UAV) collaborating to find a missing person. To accomplish this,
the human expresses an objective for the agent in terms of regions
of interest and the agent plans policies according to this objective
and the primary objective of locating the missing person. The agent
is also constrained by a limited battery life which demands the
agent to return to home before depleting.
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Our approach leverages the visual nature of this problem to
acquire user feedback which informs explanations. We propose the
following workflow for explanations of the POMDP policy given
counterfactual user paths.

Given an executed POMDP policy, the user may have questions
related to why the specific path was chosen, generally in contrast to
another path. This provides an opportunity to explain the optimal
POMDP policy in contrast to this alternative path. The user may
express this counterfactual path by drawing it on a user interface
or another means. This user path can then be translated into a
sequence of actions, forming an open-loop policy, which is not
dependent on observations or state transitions but is dependent on
the horizon of the problem only. The performance of this policy
is then compared to the optimal policy, forming the basis of an
explanation. More specifically, an explanation describes why the
optimal policy outperforms the user-proposed alternative and hence
why the realized path differs from the user’s expectations.

2.1 Leveraging Feature Expectations

A straightforward approach to policy explanation/justification is
to convey that the optimal policy achieves the same or higher
maximum expected reward than all other policies (that is, that the
optimal policy is indeed optimal). In order to demonstrate that the
policy is optimal, the expected reward of any proposed alternative
policy could be compared against that of the optimal policy, demon-
strating that the user could do no better than the optimal policy.
However, while this style of explanation justifies the actions taken
under the optimal policy, it does not provide any insight into why
this policy accumulates the maximum expected reward.

To enhance comprehensibility, we leverage features and weights
to represent the components that contribute to the reward, giving
insight into which problem objectives the algorithm satisfies. This
is an extension of explainable planning literature, in which feature
expectations and factored rewards are used to provide explanations
for MDPs [8, 9].

Choi and Kim [6] present feature expectations for POMDPs,
building on Abbeel and Ng [1]. Let ¢(s, a) be a feature occupancy
function, where s and a are the state and action, respectively. This
function returns a vector with entry i equal to 1 if a feature i is
occupied, and 0 otherwise. Let a define a weighting for each feature
such that the reward R(s, a) = @ - ¢(s, a). The feature expectation
is defined as p” (bg) = E [Z‘;‘;O Yo (bsap) | m, bo], where b is a be-
lief distribution over states. Further, ¢ (bs, a;) = X ses b(st) 9 (s, ar),
where S is the state space of the POMDP and b(s) is the probability
of state s in belief b. Then the value of a policy from some initial
belief can be expressed as V™ (b) = a - () [6]. In this way, feature
expectations provide a means of separating the valuing of certain
outcomes from the frequency of these outcomes. We leverage fea-
ture expectations for POMDPs as a means of explanations in light
of features (which could be thought of as multiple objectives) that
compose a reward function. For the SAR domain, these features
include locations of interest, battery depletion, and locating a target.

This approach gives users insight into both the frequency of
visited features and the value assigned to them, such that the user
can better understand the contribution of each to the expected
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reward. Such a method lends itself well to closed-loop user-feedback,
in which a user can adjust the value assigned to different features.

2.2 Generating Explanations

Given a near-optimal policy, here calculated with SARSOP [11]
(which we will consider consider optimal for the purposes of this
work), a sequence of actions is executed following this policy, con-
ditioned on observations, forming an apparent path. Given this
path, a user may have questions as to why the path is optimal or an
alternative path was not chosen. The user would then be prompted
to provide an alternative path, represented as an open-loop action
sequence in this work. Given the closed-loop optimal policy and
the open-loop user policy, feature expectations can be calculated
recursively using the Bellman expectation equation applied to the
feature indicator function: p (by) = ¢(bs, w(bs)) + Yy E[p7 (b41)].
These feature expectations can then be translated into a plain lan-
guage explanation, contrasting the outcomes expected under the
two policies. The primary focus of this work is the use of feature
expectations to summarize the performance of user counterfactual
policies, with the specifics of translation left to future work.

It is worth noting that while this method benefits from domains
in which users may readily provide counterfactuals such as the SAR
POMDP domain, it can be applied to any domain in which a user
provides a counterfactual policy, whether open-loop or closed-loop.
This method only requires that feature expectations can be defined
and calculated for a counterfactual policy and the policy requiring
explanation.

3 CASE STUDIES

To demonstrate our approach, we formulate a SAR POMDP with a
robot searching an nxn grid for a partially observable stationary
target while also visiting regions of interest with a limited battery
capacity. The location of the target is unknown to the robot and
user and is only inferred through noisy observations. There is a
uniform initial belief b over which cell the target occupies. The state
space of this POMDP is made up of robot position s,,p;, target
position s¢qrget, and remaining battery sp ;. Noisy observations of
the target position are given if the robot is within one grid cell of the
target. A perfect observation of the target location is provided if the
robot is in the same cell as the target. Transitions are deterministic
in position, with the robot moving in the direction indicated by any
of the cardinal direction actions, while the battery deterministically
decreases by 1 with each action. The problem terminates if the
target is found (the robot and target share the same cell) or if the
difference between the remaining battery and the battery required
to return to the starting location is less than 1. A reward r¢qrger is
given for finding the target. Supplementary reward ry. is given
for visiting the N locations of interest [1.n.

For this SAR POMDP, consider the following general features.
Let [;.y denote cells of interest (which would be specified by a user
in a collaborative SAR task as discussed in Example 2.1), then the
feature indicator function is defined as follows:

¢(s,a) = [x1, ... XN, X2, Xp ] 1)
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where

= {l if Spopor =i Lif Spopor = Starget
=

Vi e [1...N], Xt = { s

0 o.w. 0o.w.

>

1if (batt_to_go — spgs) < 1
X, =
b 0 o.w.

and batt_to_go is the battery required to return to the initial robot
state from the current robot state. These features relate back to Ex-
ample 2.1, representing user-specified objectives (cells of interest), a
central objective (locating the target), and a constraint on the prob-
lem (preserving battery life such that the robot can return to base).
Let the feature weighting be defined & = [r1, ..., ¥N, Ttarget, 0].

3.1 Case Study 1: Observable and Unobservable
Objectives

The purpose of this example is to demonstrate contrastive explana-
tions of paths in a context where there is one readily observable
objective (a cell of interest) and one partially observable objective
(the hidden target), the location of which is unknown initially.

3.1.1 Model and Features. For this example, there is one cell of
interest [; = [1, 5] with reward r; = 3.0 and a partially observable
target located at s;arger = [5, 5] with reward r¢qrger = 500.0. The
available battery is spqs; = 25.0.

3.1.2  Contrasting Path Outcomes. In this domain, the optimal pol-
icy executes the path shown in Fig. (1a) and finds the target, which
is now visible to the user. With this hindsight knowledge of the
location of the target, the user may wonder why the optimal policy
did not simply go immediately up to collect the observable reward,
and then to the target, as in Fig. (1b). In fact, for this particular
simulation, the user policy (with hindsight knowledge of the target
location) achieves greater discounted reward (r"™ = 334.154) than
the optimal policy (+” = 270.180). This further underscores the
need for explanation. The feature expectations from the open-loop
policy based on the suggested path 7y, and the optimal SARSOP
policy 7* are shown in Table (1).

Table 1: Feature expectations for optimal and open-loop user
policies for Case Study 1.

I target battery
w0036 0.731 0.0
| 0.684  0.296 0.0

While in this case, where the target is in cell [5, 5], both policies
find the target and the user policy achieves greater discounted
reward than the optimal policy, the user policy does not account for
the uncertainty in target location. In expectation over all possible
target states (i.e. the initial belief), the closed-loop optimal policy
outperforms the open-loop user policy in terms of the expected
frequency of locating the target. This results in the optimal policy
having a higher value than the user policy, as locating the target has
a much higher weight. The open-loop user policy does outperform
the optimal policy in terms of the frequency with which it reaches
the cell of interest, but this feature has a much lower weight.
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Figure 1: Case studies. (a), (b) An example in which the readily observable objective and the more valuable, partially observable,
objective do not align. Note the target location (orange star) is unknown initially and only discovered by the robot (blue
circle) after the optimal policy is executed. (c), (d) An example in which constraints restrict the feasibility of a proposed user
policy. The black arrows represent the executed actions while the gray arrows represent the remaining actions of the user
counterfactual path that were not executed due to the agent reaching a terminal battery state.

Because the target could be in any one of the cells and the prob-
lem terminates when the robot and target share a cell, there is some
probability of terminating in every cell from the initial belief. This
is likely why frequencies less than 1 are observed.

In order to produce an explanation, these feature occupancies
must be translated into plain language, as in [9]. The translation
approach itself is left to future work. A plausible explanation based
on the feature expectations could be:

"Over all possible target locations, the optimal policy

finds the target about twice as often as the user
policy. The optimal policy will visit the cell of interest
almost never. Since the target has a much higher
weighting than the cell of interest, the optimal pol-
icy will outperform the user policy."

3.2 Case Study 2: Resource Constraints

The purpose of this example is to demonstrate the effectiveness
of contrastive feature expectation explanations as they relate to
constraints on the problem, in this case the finite battery available
in the SAR POMDP.

3.2.1 Model and Features. For this example, there are three cells of
interest Iy = [5,5], I = [4,1], and I3 = [3, 3] with reward r; = 3.0,
r2 = 1.0, and r3 = 1.0, respectively. A partially observable target is
located at s¢qrger = [1, 5] with reward r;grger = 100.0. The available
battery is spqss = 12.0.

3.2.2 Contrasting Path Outcomes. Given the path generated by the
optimal policy (Fig. (1)), the user may wonder why the path did
not reach the higher-reward cell of interest in the upper right (I;)
and propose a path to that cell. However, the battery constraint
does not allow for that cell to be reached and the shortened, feasible
path shown Fig. (1d) is used as the basis for comparing outcomes.
The corresponding feature expectations are shown in Table (2).
From these feature expectations, it is apparent that neither policy
successfully reaches the higher-reward cell (/1) and that the optimal
policy is about twice as likely to locate the target when compared
to the open-loop user policy. Likewise, the optimal policy avoids
the battery terminal criteria more often. The optimal policy will

Table 2: Feature expectations for optimal and open-loop user
policies for Case Study 2.

I Iy I3 target battery
,u”* 0.0 0.202 0.354 0.550 0.346
yﬂhu 0.0 0.0 0.684 0.241 0.559

visit the other cells of interest (2, I3) in aggregate slightly less often
than open-loop user path.

With these feature expectations and domain-knowledge about
the limited battery, an explanation of the following form could be
provided:

"The battery constraint makes it impossible for ei-
ther policy to reach ;. Over all possible locations of
the target, the optimal policy will find the target
more often leading to a higher reward (since the target
is valued higher than any location of interest)."

4 CONCLUSION AND FUTURE DIRECTION

In this work, we present an approach to explaining paths generated
by optimal solutions to POMDP search and rescue problems. This
initial approach takes a counterfactual user path as the basis for
an open-loop policy which is contrasted against an optimal policy
through the use of feature expectations.

While this work presents one means of providing contrastive ex-
planations of optimal POMDP solutions, there are shortcomings to
this approach. One substantial assumption is that the user maintains
an open-loop policy that does not change with new information.
However, accounting for policy changes due to new information
likely better captures user reasoning. In particular, accounting for
the influence of observations on user’s reasoning will likely make
for more effective POMDP explanations which better capture user
behavior. Ideally, such methods could account for this closed-loop
reasoning while still requiring limited user input.

Additionally, providing proactive explanations of executed paths
which can be provided automatically in anticipation of user confu-
sion will be valuable in reducing user workload. This would also
reduce dependence on a domain-specific means of user feedback.
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